CALENDARIO DEGLI INCONTRI
0. Venerdì 11/11/16 LEZIONE DI DESIGN A TORINO 14.30 – 16.30
1. Martedì 15/11/16 VIDEOCONFERENZA. Prof. Paolo Boieri. Prof. Dario Daghero 14.30 – 18.30
2. Giovedì 24/11/16 LEZIONE. Prof.ssa Claudia Lucon 14.30 – 16.30
3. Giovedì 01/12/16 LEZIONE. Prof.ssa Claudia Lucon 14.30 – 16.30
4. Giovedì 15/12/16 LEZIONE. Prof.ssa Claudia Lucon 14.30 – 16.30
5. Giovedì 22/12/16 LEZIONE. Prof.ssa Claudia Lucon 14.30 – 16.30
6. Giovedì 12/01/17 LEZIONE. Prof.ssa Claudia Lucon 14.30 – 16.30
7. Giovedì 19/01/17 LEZIONE. Prof.ssa Claudia Lucon 14.30 – 16.30
8. Giovedì 26/01/17 LEZIONE. Prof.ssa Claudia Lucon 14.30 – 16.30
9. Giovedì 09/02/17 SIMULAZIONE DEL TEST FINALE 14.30 – 16.30
10. 22/02/17 o 23/02/17 TEST FINALE AL POLITECNICO DI TORINO
L’incontro 0 si svolgerà presso l’Aula Magna del Politecnico di Torino, in Corso Duca degli Abruzzi, 24 e sarà rivolto ai soli studenti che hanno inserito la scelta di design all’atto dell’iscrizione al progetto orientamento, i quali dovranno presentarsi muniti dello statino stampato.
Gli incontri contrassegnati dal numero 2 al numero 9 si terranno presso l’Aula Magna del Liceo Amaldi di Novi Ligure in via Mameli 9.
L’incontro 10, relativo al test finale, si svolgerà nei laboratori di informatica del Politecnico di Torino in Corso Duca degli Abruzzi 24.
Per poter accedere al test finale è necessaria la presenza all’incontro 1 e ad almeno sei incontri tra quelli contrassegnati dai numeri 2, 3, 4, 5, 6, 7, 8, 9.
Per gli studenti interessati al corso di Design, è inoltre obbligatoria la presenza all’incontro 0. Il presente calendario, in caso di necessità, potrà subire le modifiche adeguate.
PROGRAMMA DI MATEMATICA
L’argomento
proposto nella lezione universitaria riguarda le disequazioni in R2,
che coinvolgono alcune funzioni elementari come i polinomi, le
funzioni razionali, le radici, l’esponenziale, il logaritmo e le
funzioni trigonometriche. Si completa questo quadro con le equazioni
implicite di circonferenze e la funzione valore assoluto e le
relative disequazioni.
Questo
argomento ha una sua motivazione nella necessità di visualizzare nel
piano le soluzioni e quindi serve a orientare lo studente a una
comprensione geometrica, visiva e non solo algebrica delle soluzioni.
Queste
considerazioni di tipo grafico e visivo possono essere viste come
approfondimento dei grafici delle funzioni elementari e possono anche
essere collegati alla ricerca di domini di funzioni e alla
individuazione degli intervalli di monotonia di funzioni derivabili.
PROGRAMMA DI FISICA
L’argomento
proposto riguarda il moto di un corpo in presenza di forze
dissipative, nello specifico il moto di una massa su una superficie
scabra qualsiasi. Vengono richiamati i concetti di
-
sistema di riferimento,
-
diagramma di corpo libero,
-
scomposizione delle forze agenti sulla massa con l’analisi del
significato delle forze
attive e di quelle reattive,
-
applicazione delle leggi della dinamica,
-
discussione del moto su una superficie orizzontale e su una
superficie piana
inclinata di un angolo rispetto
all’orizzontale,
-
raffronto fra il moto senza forze dissipative o in presenza di forze
dissipative,
-
rappresentazione grafica delle forze trattate.
I
concetti di forza ed il suo significato nella definizione del moto
sono basilari per i corsi di fisica I e II, meccanica razionale,
meccanica applicata (ingegneria industriale), scienza delle
costruzioni ingegneria costruttori). Sovente tali concetti sono
presenti in forma nebulosa negli iscritti al primo anno di un corso
universitario in quanto gli studenti li acquisiscono non oltre il
terzo anno della scuola superiore, quando risulta difficoltoso
metabolizzare il significato delle grandezze fisiche basilari per la
descrizione di un processo inerente un fenomeno fisico.